RIEMANNIAN GEOMETRY
 EXCERCISE 2

1. (Christoffel symbols) Let $\left(U, x=\left(x^{1}, \ldots, x^{n}\right)\right)$ be a chart of a Riemannian manifold M. Let

$$
\begin{equation*}
\left(x^{1}, \ldots, x^{n}\right) \rightarrow\left(y^{1}, \ldots, y^{n}\right) \tag{0.1}
\end{equation*}
$$

be a smooth coordinate change, and the Riemannian metric can be written as

$$
g_{i j}(x) d x^{i} \otimes d x^{j} \text { and } h_{\alpha \beta}(y) d y^{\alpha} \otimes d y^{\beta}
$$

respectively.
(i) Show the transformation formula of $g^{i j}$ under the coordinate change 0.1 is

$$
g^{i j}(x)=h^{\alpha \beta}(y(x)) \frac{\partial x^{i}}{\partial y^{\alpha}} \frac{\partial x^{j}}{\partial y^{\beta}}
$$

(ii) Compute the transformation formulae of the Christoffel symbols $\Gamma_{j k}^{i}$ under the coordinate change (0.1). Do they define a tensor?
(iii) Let $\gamma:[a, b] \rightarrow U$ be a smooth curve. Denote $\dot{x}^{i}(t):=\frac{d}{d t} x^{i}(\gamma(t))$. Compute the transformation formula of

$$
\ddot{x}^{i}(t)+\Gamma_{j k}^{i}(x(t)) \dot{x}^{j}(t) \dot{x}^{k}(t)
$$

under the coordinate change (0.1).
2. (Lobatchevski plane) Let M be the upper half-plane $\left\{(x, y) \in \mathbb{R}^{2}: y>0\right\}$, with the Riemannian metric

$$
\frac{1}{y^{2}}(d x \otimes d x+d y \otimes d y)
$$

(i) Compute the Christoffel symbols and write down the system of differential equations satisfied by the geodesics.
(ii) Prove that the curves $\gamma:(0,+\infty) \rightarrow M, t \mapsto\left(x_{0}, e^{c t}\right)$, where $x_{0} \in \mathbb{R}, c>0$, are geodesics.
(iii) Let $0<a<b<+\infty$. Let γ be as in (ii) and $\sigma:[a, b] \rightarrow M$ be a piecewise smooth curve connecting $\gamma(a)$ and $\gamma(b)$. Prove that

$$
\operatorname{Length}\left(\sigma_{\mid[a, b]}\right) \geq \operatorname{Length}\left(\gamma_{\mid[a, b]}\right) .
$$

Characterize the cases when the equality holds.
(iv) At $p=(0,1) \in M$, compute $\exp _{p}((0, \eta))$, where $(0, \eta) \in T_{p} M$ (we identify $T_{p} M$ with \mathbb{R}^{2} here); Compute $\operatorname{dexp}_{p}((0, \eta))$.
3. Consider $S^{2} \subset \mathbb{R}^{3}$ and its spherical coordinate $\left\{(\varphi, \theta): \varphi \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right), \theta \in\right.$ $[-\pi, \pi)\}$. We know the induced Riemannian metric is

$$
d \varphi \otimes d \varphi+\cos ^{2} \varphi d \theta \otimes d \theta
$$

(i) Compute the Christoffel symbols and write down the system of differential equations satisfied by the geodesics.
(ii) Prove that the curves $\gamma:\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow S^{2}, t \mapsto\left(\theta_{0}, c t\right)$, where $\theta_{0} \in(-\pi, \pi)$, $c>0$, are geodesics.
(iii) Write down the $\operatorname{exponential~map~}^{\exp _{p}}$ and $\exp _{p}$ at the north pole p (i.e., at the point with $\varphi=-\frac{\pi}{2}$).

