RIEMANNIAN GEOMETRY EXCERCISE 2

1. (Christoffel symbols) Let $(U, x = (x^1, \dots, x^n))$ be a chart of a Riemannian manifold M. Let

$$(0.1) \qquad (x^1, \dots, x^n) \to (y^1, \dots, y^n)$$

be a smooth coordinate change, and the Riemannian metric can be written as

$$g_{ij}(x)dx^i\otimes dx^j$$
 and $h_{lphaeta}(y)dy^{lpha}\otimes dy^{eta}$

respectively.

(i) Show the transformation formula of g^{ij} under the coordinate change (0.1) is

$$g^{ij}(x) = h^{\alpha\beta}(y(x)) \frac{\partial x^i}{\partial y^\alpha} \frac{\partial x^j}{\partial y^\beta}$$

- (ii) Compute the transformation formulae of the Christoffel symbols Γ_{jk}^{i} under the coordinate change (0.1). Do they define a tensor?
- (iii) Let $\gamma : [a, b] \to U$ be a smooth curve. Denote $\dot{x}^i(t) := \frac{d}{dt}x^i(\gamma(t))$. Compute the transformation formula of

$$\ddot{x}^{i}(t) + \Gamma^{i}_{ik}(x(t))\dot{x}^{j}(t)\dot{x}^{k}(t)$$

under the coordinate change (0.1).

2. (Lobatchevski plane) Let M be the upper half-plane $\{(x, y) \in \mathbb{R}^2 : y > 0\}$, with the Riemannian metric

$$rac{1}{y^2}(dx\otimes dx+dy\otimes dy)$$
 .

- (i) Compute the Christoffel symbols and write down the system of differential equations satisfied by the geodesics.
- (ii) Prove that the curves $\gamma : (0, +\infty) \to M$, $t \mapsto (x_0, e^{ct})$, where $x_0 \in \mathbb{R}$, c > 0, are geodesics.
- (iii) Let $0 < a < b < +\infty$. Let γ be as in (ii) and $\sigma : [a, b] \to M$ be a piecewise smooth curve connecting $\gamma(a)$ and $\gamma(b)$. Prove that

$$\operatorname{Length}(\sigma_{|[a,b]}) \geq \operatorname{Length}(\gamma_{|[a,b]}).$$

Characterize the cases when the equality holds.

(iv) At $p = (0, 1) \in M$, compute $\exp_p((0, \eta))$, where $(0, \eta) \in T_pM$ (we identify T_pM with \mathbb{R}^2 here); Compute $d\exp_p((0, \eta))$.

3. Consider $S^2 \subset \mathbb{R}^3$ and its spherical coordinate $\{(\varphi, \theta) : \varphi \in [-\frac{\pi}{2}, \frac{\pi}{2}), \theta \in [-\pi, \pi)\}$. We know the induced Riemannian metric is

$$d\varphi \otimes d\varphi + \cos^2 \varphi d\theta \otimes d\theta.$$

- (i) Compute the Christoffel symbols and write down the system of differential equations satisfied by the geodesics.
- (ii) Prove that the curves $\gamma: (-\frac{\pi}{2}, \frac{\pi}{2}) \to S^2$, $t \mapsto (\theta_0, ct)$, where $\theta_0 \in (-\pi, \pi)$, c > 0, are geodesics.
- (iii) Write down the exponential map \exp_p and $d\exp_p$ at the north pole p (i.e., at the point with $\varphi = -\frac{\pi}{2}$).